Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet
Abstract In order to make accurate predictions of material properties, current machine-learning approaches generally require large amounts of data, which are often not available in practice. In this work, MODNet, an all-round framework, is presented which relies on a feedforward neural network, the...
Guardado en:
Autores principales: | Pierre-Paul De Breuck, Geoffroy Hautier, Gian-Marco Rignanese |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/766aa52f573542b988fe2fc011e128b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Visualizing temperature-dependent phase stability in high entropy alloys
por: Daniel Evans, et al.
Publicado: (2021) -
Effective mass and Fermi surface complexity factor from ab initio band structure calculations
por: Zachary M. Gibbs, et al.
Publicado: (2017) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
Machine learning on properties of multiscale multisource hydroxyapatite nanoparticles datasets with different morphologies and sizes
por: Ziteng Liu, et al.
Publicado: (2021) -
Two-step machine learning enables optimized nanoparticle synthesis
por: Flore Mekki-Berrada, et al.
Publicado: (2021)