Spatio-Temporal Deep Learning-Based Methods for Defect Detection: An Industrial Application Study Case
Data-driven methods—particularly machine learning techniques—are expected to play a key role in the headway of Industry 4.0. One increasingly popular application in this context is when anomaly detection is employed to test manufactured goods in assembly lines. In this work, we compare supervised, s...
Guardado en:
Autores principales: | Lucas A. da Silva, Eulanda M. dos Santos, Leo Araújo, Natalia S. Freire, Max Vasconcelos, Rafael Giusti, David Ferreira, Anderson S. Jesus, Agemilson Pimentel, Caio F. S. Cruz, Ruan J. S. Belem, André S. Costa, Osmar A. da Silva |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/767bfa1dee5a46788481ad3eea69f2e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
por: Seungdong Yoa, et al.
Publicado: (2021) -
Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
por: Zhen Ma, et al.
Publicado: (2021) -
The Usefulness of Video Learning Analytics in Small Scale E-Learning Scenarios
por: César Córcoles, et al.
Publicado: (2021) -
Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
por: Nojin Park, et al.
Publicado: (2021) -
Review and Perspectives of Machine Learning Methods for Wind Turbine Fault Diagnosis
por: Mingzhu Tang, et al.
Publicado: (2021)