Existence of renormalized solutions for some quasilinear elliptic Neumann problems
This paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76816fc6f9d54ec9947112a92b13f407 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:76816fc6f9d54ec9947112a92b13f407 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:76816fc6f9d54ec9947112a92b13f4072021-12-05T14:10:56ZExistence of renormalized solutions for some quasilinear elliptic Neumann problems2353-062610.1515/msds-2020-0133https://doaj.org/article/76816fc6f9d54ec9947112a92b13f4072021-08-01T00:00:00Zhttps://doi.org/10.1515/msds-2020-0133https://doaj.org/toc/2353-0626This paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{a_i}(x,u,\nabla u) \cdot {n_i} = 0} } \hfill & {{\rm{on}}} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces, where A is a Leray-Lions operator and g(x, u, ∇u), f (x, u, ∇u) are two Carathéodory functions that verify some growth conditions. We prove the existence of renormalized solutions for our strongly nonlinear elliptic Neumann problem.Benboubker Mohamed BadrHjiaj HassaneIbrango IdrissaOuaro StanislasDe Gruyterarticlerenormalized solutionstrongly nonlinear elliptic equationsanisotropic variable exponent sobolev spacesneumann problem35j6035d05MathematicsQA1-939ENNonautonomous Dynamical Systems, Vol 8, Iss 1, Pp 180-206 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
renormalized solution strongly nonlinear elliptic equations anisotropic variable exponent sobolev spaces neumann problem 35j60 35d05 Mathematics QA1-939 |
spellingShingle |
renormalized solution strongly nonlinear elliptic equations anisotropic variable exponent sobolev spaces neumann problem 35j60 35d05 Mathematics QA1-939 Benboubker Mohamed Badr Hjiaj Hassane Ibrango Idrissa Ouaro Stanislas Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
description |
This paper is devoted to study some nonlinear elliptic Neumann equations of the type{Au+g(x,u,∇u)+|u|q(⋅)-2u=f(x,u,∇u)inΩ,∑i=1Nai(x,u,∇u)⋅ni=0on∂Ω,\left\{ {\matrix{ {Au + g(x,u,\nabla u) + |u{|^{q( \cdot ) - 2}}u = f(x,u,\nabla u)} \hfill & {{\rm{in}}} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{a_i}(x,u,\nabla u) \cdot {n_i} = 0} } \hfill & {{\rm{on}}} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces, where A is a Leray-Lions operator and g(x, u, ∇u), f (x, u, ∇u) are two Carathéodory functions that verify some growth conditions. We prove the existence of renormalized solutions for our strongly nonlinear elliptic Neumann problem. |
format |
article |
author |
Benboubker Mohamed Badr Hjiaj Hassane Ibrango Idrissa Ouaro Stanislas |
author_facet |
Benboubker Mohamed Badr Hjiaj Hassane Ibrango Idrissa Ouaro Stanislas |
author_sort |
Benboubker Mohamed Badr |
title |
Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
title_short |
Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
title_full |
Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
title_fullStr |
Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
title_full_unstemmed |
Existence of renormalized solutions for some quasilinear elliptic Neumann problems |
title_sort |
existence of renormalized solutions for some quasilinear elliptic neumann problems |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/76816fc6f9d54ec9947112a92b13f407 |
work_keys_str_mv |
AT benboubkermohamedbadr existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems AT hjiajhassane existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems AT ibrangoidrissa existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems AT ouarostanislas existenceofrenormalizedsolutionsforsomequasilinearellipticneumannproblems |
_version_ |
1718371546788003840 |