Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts

Previous camera calibration methods often use a checkerboard to capture images and estimate the camera parameters from the correspondences between images and the checkerboard. The corner points in the checkerboard images are used as useful features for correspondence matching. Therefore, it is essen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Seonghyeon Kang, Seong Dae Kim, Munchurl Kim
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/7682384e0a98464b858ecfec8c243c24
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7682384e0a98464b858ecfec8c243c24
record_format dspace
spelling oai:doaj.org-article:7682384e0a98464b858ecfec8c243c242021-11-17T00:00:58ZStructural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts2169-353610.1109/ACCESS.2021.3126570https://doaj.org/article/7682384e0a98464b858ecfec8c243c242021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9606884/https://doaj.org/toc/2169-3536Previous camera calibration methods often use a checkerboard to capture images and estimate the camera parameters from the correspondences between images and the checkerboard. The corner points in the checkerboard images are used as useful features for correspondence matching. Therefore, it is essential to precisely find the corner points in the checkerboard images. In many previous works, the corner points are extracted assuming that the checkerboard images are not distorted by its lens. Instead, image blurring and Gaussian noise on the images are usually considered, but other cases are not dealt with. However, the captured checkerboard images are often corrupted by lens distortions and compression artifacts, which leads to performance degradation of corner point extraction. Moreover, the corner points are extracted individually in the previous methods without considering their geometric relations. To better handle the corner point extraction problem under lens distortions, in our corner point extraction optimization, the distorted locations of the pixels on checkerboard images are corrected with the camera parameters, and the structural constraints for checkerboard image grids are then applied under the line-to-line mapping. Also, to robustly find the blurred edges between corner points due to JPEG compression, an edge surface model is newly proposed that models the transitions with over- and under-shoots around the blurred edges. Extensive experimental results show that our method significantly outperforms the state-of-the-art method with average 88.3% and 54.3% reduction in RMSE for corner point reprojection and camera parameter estimation, respectively under compression and lens distortions for synthetic and real data.Seonghyeon KangSeong Dae KimMunchurl KimIEEEarticleCorner point extractionstructural informationcamera calibrationlens distortioncompression distortionElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 151037-151048 (2021)
institution DOAJ
collection DOAJ
language EN
topic Corner point extraction
structural information
camera calibration
lens distortion
compression distortion
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Corner point extraction
structural information
camera calibration
lens distortion
compression distortion
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Seonghyeon Kang
Seong Dae Kim
Munchurl Kim
Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
description Previous camera calibration methods often use a checkerboard to capture images and estimate the camera parameters from the correspondences between images and the checkerboard. The corner points in the checkerboard images are used as useful features for correspondence matching. Therefore, it is essential to precisely find the corner points in the checkerboard images. In many previous works, the corner points are extracted assuming that the checkerboard images are not distorted by its lens. Instead, image blurring and Gaussian noise on the images are usually considered, but other cases are not dealt with. However, the captured checkerboard images are often corrupted by lens distortions and compression artifacts, which leads to performance degradation of corner point extraction. Moreover, the corner points are extracted individually in the previous methods without considering their geometric relations. To better handle the corner point extraction problem under lens distortions, in our corner point extraction optimization, the distorted locations of the pixels on checkerboard images are corrected with the camera parameters, and the structural constraints for checkerboard image grids are then applied under the line-to-line mapping. Also, to robustly find the blurred edges between corner points due to JPEG compression, an edge surface model is newly proposed that models the transitions with over- and under-shoots around the blurred edges. Extensive experimental results show that our method significantly outperforms the state-of-the-art method with average 88.3% and 54.3% reduction in RMSE for corner point reprojection and camera parameter estimation, respectively under compression and lens distortions for synthetic and real data.
format article
author Seonghyeon Kang
Seong Dae Kim
Munchurl Kim
author_facet Seonghyeon Kang
Seong Dae Kim
Munchurl Kim
author_sort Seonghyeon Kang
title Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
title_short Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
title_full Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
title_fullStr Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
title_full_unstemmed Structural-Information-Based Robust Corner Point Extraction for Camera Calibration Under Lens Distortions and Compression Artifacts
title_sort structural-information-based robust corner point extraction for camera calibration under lens distortions and compression artifacts
publisher IEEE
publishDate 2021
url https://doaj.org/article/7682384e0a98464b858ecfec8c243c24
work_keys_str_mv AT seonghyeonkang structuralinformationbasedrobustcornerpointextractionforcameracalibrationunderlensdistortionsandcompressionartifacts
AT seongdaekim structuralinformationbasedrobustcornerpointextractionforcameracalibrationunderlensdistortionsandcompressionartifacts
AT munchurlkim structuralinformationbasedrobustcornerpointextractionforcameracalibrationunderlensdistortionsandcompressionartifacts
_version_ 1718426056469250048