Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
Abstract A nanofluid containing water and nanoparticles made of copper (Cu) inside a cavity with square shape is simulated utilizing the computational fluid dynamics (CFD) approach. The nanoparticles made up 15% of the nanofluid. By performing the simulation, the CFD output is characterized by the c...
Guardado en:
Autores principales: | Meisam Babanezhad, Ali Taghvaie Nakhjiri, Azam Marjani, Mashallah Rezakazemi, Saeed Shirazian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/768cf09976a4425b83b0b239d4088bae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of machine learning membership functions and degree of membership function on each input parameter for simulation of reactors
por: Rasool Pelalak, et al.
Publicado: (2021) -
Performance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipe
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Thermal prediction of turbulent forced convection of nanofluid using computational fluid dynamics coupled genetic algorithm with fuzzy interface system
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
por: Meisam Babanezhad, et al.
Publicado: (2021) -
Liquid temperature prediction in bubbly flow using ant colony optimization algorithm in the fuzzy inference system as a trainer
por: Meisam Babanezhad, et al.
Publicado: (2020)