Power Efficient Design of High-Performance Convolutional Neural Networks Hardware Accelerator on FPGA: A Case Study With GoogLeNet
Convolutional neural networks (CNNs) have dominated image recognition and object detection models in the last few years. They can achieve the highest accuracies with several applications such as automotive and biomedical applications. CNNs are usually implemented by using Graphical Processing Units...
Guardado en:
Autores principales: | Ahmed J. Abd El-Maksoud, Mohamed Ebbed, Ahmed H. Khalil, Hassan Mostafa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76953a014d404d07a2d8a929652c98f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
por: Lin Huang, et al.
Publicado: (2021) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
por: Mahmood Azhar Qureshi, et al.
Publicado: (2021) -
Review on FPGA-Based Accelerators in Deep Learning
por: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publicado: (2021) -
Fixed-Point Processing of the SAR Back-Projection Algorithm on FPGA
por: Don Lahiru Nirmal Hettiarachchi, et al.
Publicado: (2021) -
FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
por: Mannhee Cho, et al.
Publicado: (2021)