Power Efficient Design of High-Performance Convolutional Neural Networks Hardware Accelerator on FPGA: A Case Study With GoogLeNet
Convolutional neural networks (CNNs) have dominated image recognition and object detection models in the last few years. They can achieve the highest accuracies with several applications such as automotive and biomedical applications. CNNs are usually implemented by using Graphical Processing Units...
Enregistré dans:
| Auteurs principaux: | Ahmed J. Abd El-Maksoud, Mohamed Ebbed, Ahmed H. Khalil, Hassan Mostafa |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
IEEE
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/76953a014d404d07a2d8a929652c98f7 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
par: Lin Huang, et autres
Publié: (2021) -
Sparse-PE: A Performance-Efficient Processing Engine Core for Sparse Convolutional Neural Networks
par: Mahmood Azhar Qureshi, et autres
Publié: (2021) -
Review on FPGA-Based Accelerators in Deep Learning
par: LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+
Publié: (2021) -
Fixed-Point Processing of the SAR Back-Projection Algorithm on FPGA
par: Don Lahiru Nirmal Hettiarachchi, et autres
Publié: (2021) -
FPGA-Based Convolutional Neural Network Accelerator with Resource-Optimized Approximate Multiply-Accumulate Unit
par: Mannhee Cho, et autres
Publié: (2021)