Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

The SARS-COV-2 pandemic has put pressure on intensive care units, so that predicting severe deterioration early is a priority. Here, the authors develop a multimodal severity score including clinical and imaging features that has significantly improved prognostic performance in two validation datase...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nathalie Lassau, Samy Ammari, Emilie Chouzenoux, Hugo Gortais, Paul Herent, Matthieu Devilder, Samer Soliman, Olivier Meyrignac, Marie-Pauline Talabard, Jean-Philippe Lamarque, Remy Dubois, Nicolas Loiseau, Paul Trichelair, Etienne Bendjebbar, Gabriel Garcia, Corinne Balleyguier, Mansouria Merad, Annabelle Stoclin, Simon Jegou, Franck Griscelli, Nicolas Tetelboum, Yingping Li, Sagar Verma, Matthieu Terris, Tasnim Dardouri, Kavya Gupta, Ana Neacsu, Frank Chemouni, Meriem Sefta, Paul Jehanno, Imad Bousaid, Yannick Boursin, Emmanuel Planchet, Mikael Azoulay, Jocelyn Dachary, Fabien Brulport, Adrian Gonzalez, Olivier Dehaene, Jean-Baptiste Schiratti, Kathryn Schutte, Jean-Christophe Pesquet, Hugues Talbot, Elodie Pronier, Gilles Wainrib, Thomas Clozel, Fabrice Barlesi, Marie-France Bellin, Michael G. B. Blum
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/76a7a97e4e24414e8fad1e1e8183cf07
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The SARS-COV-2 pandemic has put pressure on intensive care units, so that predicting severe deterioration early is a priority. Here, the authors develop a multimodal severity score including clinical and imaging features that has significantly improved prognostic performance in two validation datasets compared to previous scores.