RNN- and CNN-based weed detection for crop improvement: An overview
Introduction. Deep learning is a modern technique for image processing and data analysis with promising results and great potential. Successfully applied in various fields, it has recently entered the field of agriculture to address such agricultural problems as disease identification, fruit/plant c...
Guardado en:
Autores principales: | Brahim Jabir, Loubna Rabhi, Noureddine Falih |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Kemerovo State University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76c47661b439482785715b42fe919e86 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
por: Wei Huang, et al.
Publicado: (2021) -
A Novel Fuzzy Optimized CNN-RNN Method for Facial Expression Recognition
por: Dong Zhang, et al.
Publicado: (2021) -
Automatic Detection of Traffic Accidents from Video Using Deep Learning Techniques
por: Sergio Robles-Serrano, et al.
Publicado: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
por: Liying Chang, et al.
Publicado: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
por: Martin G. Frasch, et al.
Publicado: (2021)