Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock.
Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock prote...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76d47a1603a3459389664b2b7efe0113 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:76d47a1603a3459389664b2b7efe0113 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:76d47a1603a3459389664b2b7efe01132021-11-18T07:26:41ZCasein kinase 1 proteomics reveal prohibitin 2 function in molecular clock.1932-620310.1371/journal.pone.0031987https://doaj.org/article/76d47a1603a3459389664b2b7efe01132012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22384121/?tool=EBIhttps://doaj.org/toc/1932-6203Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2.Lorna S KategayaAisha HilliardLouying ZhangJohn M AsaraLouis J PtáčekYing-Hui FuPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 2, p e31987 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lorna S Kategaya Aisha Hilliard Louying Zhang John M Asara Louis J Ptáček Ying-Hui Fu Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
description |
Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2. |
format |
article |
author |
Lorna S Kategaya Aisha Hilliard Louying Zhang John M Asara Louis J Ptáček Ying-Hui Fu |
author_facet |
Lorna S Kategaya Aisha Hilliard Louying Zhang John M Asara Louis J Ptáček Ying-Hui Fu |
author_sort |
Lorna S Kategaya |
title |
Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
title_short |
Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
title_full |
Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
title_fullStr |
Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
title_full_unstemmed |
Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
title_sort |
casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/76d47a1603a3459389664b2b7efe0113 |
work_keys_str_mv |
AT lornaskategaya caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock AT aishahilliard caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock AT louyingzhang caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock AT johnmasara caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock AT louisjptacek caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock AT yinghuifu caseinkinase1proteomicsrevealprohibitin2functioninmolecularclock |
_version_ |
1718423416387665920 |