Breathing In-Depth: A Parametrization Study on RGB-D Respiration Extraction Methods
As depth cameras have gotten smaller, more affordable, and more precise, they have also emerged as a promising sensor in ubiquitous systems, particularly for detecting objects, scenes, and persons. This article sets out to systematically evaluate how suitable depth data can be for picking up users’...
Guardado en:
Autores principales: | Jochen Kempfle, Kristof Van Laerhoven |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76d6100f042d49ea986636e49f137044 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet
por: João Batista Pacheco Junior, et al.
Publicado: (2021) -
Computational Large Field-of-View RGB-D Integral Imaging System
por: Geunho Jung, et al.
Publicado: (2021) - Respiration physiology
-
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
por: Faisal Khan, et al.
Publicado: (2021) -
Monocular Human Depth Estimation Via Pose Estimation
por: Jinyoung Jun, et al.
Publicado: (2021)