Breathing In-Depth: A Parametrization Study on RGB-D Respiration Extraction Methods
As depth cameras have gotten smaller, more affordable, and more precise, they have also emerged as a promising sensor in ubiquitous systems, particularly for detecting objects, scenes, and persons. This article sets out to systematically evaluate how suitable depth data can be for picking up users’...
Enregistré dans:
| Auteurs principaux: | Jochen Kempfle, Kristof Van Laerhoven |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Frontiers Media S.A.
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/76d6100f042d49ea986636e49f137044 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Performance Analysis in the Segmentation of urban asphalted roads in RGB satellite images using K-Means++ and SegNet
par: João Batista Pacheco Junior, et autres
Publié: (2021) -
Computational Large Field-of-View RGB-D Integral Imaging System
par: Geunho Jung, et autres
Publié: (2021) - Respiration physiology
-
A Review of Benchmark Datasets and Training Loss Functions in Neural Depth Estimation
par: Faisal Khan, et autres
Publié: (2021) -
Monocular Human Depth Estimation Via Pose Estimation
par: Jinyoung Jun, et autres
Publié: (2021)