The effect of natural selection on the propagation of protein expression noise to bacterial growth.

In bacterial cells, protein expression is a highly stochastic process. Gene expression noise moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A common intuition is that, due to their relatively high noise amplitudes, proteins with a low mean expression level...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Laurens H J Krah, Rutger Hermsen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/76d776ae82034af4972a3d311934b98b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In bacterial cells, protein expression is a highly stochastic process. Gene expression noise moreover propagates through the cell and adds to fluctuations in the cellular growth rate. A common intuition is that, due to their relatively high noise amplitudes, proteins with a low mean expression level are the most important drivers of fluctuations in physiological variables. In this work, we challenge this intuition by considering the effect of natural selection on noise propagation. Mathematically, the contribution of each protein species to the noise in the growth rate depends on two factors: the noise amplitude of the protein's expression level, and the sensitivity of the growth rate to fluctuations in that protein's concentration. We argue that natural selection, while shaping mean abundances to increase the mean growth rate, also affects cellular sensitivities. In the limit in which cells grow optimally fast, the growth rate becomes most sensitive to fluctuations in highly abundant proteins. This causes abundant proteins to overall contribute strongly to the noise in the growth rate, despite their low noise levels. We further explore this result in an experimental data set of protein abundances, and test key assumptions in an evolving, stochastic toy model of cellular growth.