A Lightweight CNN Architecture for Automatic Modulation Classification
Automatic modulation classification (AMC) algorithms based on deep learning (DL) have been widely studied in the past decade, showing significant performance advantage compared to traditional ones. However, the existing DL methods generally behave worse in computational complexity. For this, this pa...
Guardado en:
Autores principales: | Zhongyong Wang, Dongzhe Sun, Kexian Gong, Wei Wang, Peng Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76da91b7b5534820ac74dcded0ea909c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sentiment Analysis of Review Text Based on BiGRU-Attention and Hybrid CNN
por: Qiannan Zhu, et al.
Publicado: (2021) -
A Fast Lightweight 3D Separable Convolutional Neural Network With Multi-Input Multi-Output for Moving Object Detection
por: Bingxin Hou, et al.
Publicado: (2021) -
VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification
por: Suraj Mishra, et al.
Publicado: (2021) -
AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram
por: Erdenebayar Urtnasan, et al.
Publicado: (2021) -
Automatic Detection and Classification of Cough Events Based on Deep Learning
por: Hossein Tabatabaei Seyed Amir, et al.
Publicado: (2020)