Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
Recently, deep learning has been successfully applied to object detection and localization tasks in images. When setting up deep learning frameworks for supervised training with large datasets, strongly labeling the objects facilitates good performance; however, the complexity of the image scene and...
Guardado en:
Autores principales: | Nojin Park, Hanseok Ko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76e39bd9a5a04c889c7bb8e6da6d03ba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Chao Fan, et al.
Publicado: (2021) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
por: Shanmei Lu, et al.
Publicado: (2020) -
Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
por: Zhen Ma, et al.
Publicado: (2021) -
Adaptive quantum state tomography via weak value
por: Xuanmin Zhu, et al.
Publicado: (2021) -
POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
por: Jinyang Wang, et al.
Publicado: (2021)