Weakly Supervised Learning for Object Localization Based on an Attention Mechanism
Recently, deep learning has been successfully applied to object detection and localization tasks in images. When setting up deep learning frameworks for supervised training with large datasets, strongly labeling the objects facilitates good performance; however, the complexity of the image scene and...
Enregistré dans:
Auteurs principaux: | Nojin Park, Hanseok Ko |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/76e39bd9a5a04c889c7bb8e6da6d03ba |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
par: Chao Fan, et autres
Publié: (2021) -
Salient Object Detection Using Recurrent Guidance Network With Hierarchical Attention Features
par: Shanmei Lu, et autres
Publié: (2020) -
Weakly Supervised Video Anomaly Detection Based on 3D Convolution and LSTM
par: Zhen Ma, et autres
Publié: (2021) -
Adaptive quantum state tomography via weak value
par: Xuanmin Zhu, et autres
Publié: (2021) -
POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
par: Jinyang Wang, et autres
Publié: (2021)