Review on FPGA-Based Accelerators in Deep Learning
For the past few years, with rapid development of Internet and big data, artificial intelligence has become popular, and it is the rise of deep learning that promotes the rapid development of AI. The problem that needs to be solved urgently in the era of big data is how to effectively analyze and u...
Enregistré dans:
Auteur principal: | LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+ |
---|---|
Format: | article |
Langue: | ZH |
Publié: |
Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/76e948fca2fc46b29ce8fef02523a493 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
PEST: Energy-Efficient NEST Brain-Like Simulator Implemented by PYNQ Cluster
par: LI Peiqi1, YU Gongjian2, HUA Xia2, LIU Jiahang2, CHAI Zhilei2,3+
Publié: (2021) -
Temporal Accelerators: Unleashing the Potential of Embedded FPGAs
par: Christopher Cichiwskyj, et autres
Publié: (2021) -
Research Progress of Deep Learning in Retinal Vessel Segmentation
par: LI Lanlan1, ZHANG Xiaohui1, NIU Decao3, HU Yihuang1, ZHAO Tiesong1, WANG Dabiao2+
Publié: (2021) -
Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks
par: Jose Nunez-Yanez, et autres
Publié: (2021) -
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
par: Lin Huang, et autres
Publié: (2021)