Review on FPGA-Based Accelerators in Deep Learning
For the past few years, with rapid development of Internet and big data, artificial intelligence has become popular, and it is the rise of deep learning that promotes the rapid development of AI. The problem that needs to be solved urgently in the era of big data is how to effectively analyze and u...
Guardado en:
Autor principal: | LIU Tengda1, ZHU Junwen1, ZHANG Yiwen2+ |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Journal of Computer Engineering and Applications Beijing Co., Ltd., Science Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/76e948fca2fc46b29ce8fef02523a493 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
PEST: Energy-Efficient NEST Brain-Like Simulator Implemented by PYNQ Cluster
por: LI Peiqi1, YU Gongjian2, HUA Xia2, LIU Jiahang2, CHAI Zhilei2,3+
Publicado: (2021) -
Temporal Accelerators: Unleashing the Potential of Embedded FPGAs
por: Christopher Cichiwskyj, et al.
Publicado: (2021) -
Research Progress of Deep Learning in Retinal Vessel Segmentation
por: LI Lanlan1, ZHANG Xiaohui1, NIU Decao3, HU Yihuang1, ZHAO Tiesong1, WANG Dabiao2+
Publicado: (2021) -
Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks
por: Jose Nunez-Yanez, et al.
Publicado: (2021) -
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
por: Lin Huang, et al.
Publicado: (2021)