AI-doscopist: a real-time deep-learning-based algorithm for localising polyps in colonoscopy videos with edge computing devices
Abstract We have designed a deep-learning model, an “Artificial Intelligent Endoscopist (a.k.a. AI-doscopist)”, to localise colonic neoplasia during colonoscopy. This study aims to evaluate the agreement between endoscopists and AI-doscopist for colorectal neoplasm localisation. AI-doscopist was pre...
Guardado en:
Autores principales: | Carmen C. Y. Poon, Yuqi Jiang, Ruikai Zhang, Winnie W. Y. Lo, Maggie S. H. Cheung, Ruoxi Yu, Yali Zheng, John C. T. Wong, Qing Liu, Sunny H. Wong, Tony W. C. Mak, James Y. W. Lau |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/770504c377534cd0bd60f862a5912cdc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations.
por: Kaidong Li, et al.
Publicado: (2021) -
Factors associated with adenoma detection rate and diagnosis of polyps and colorectal cancer during colonoscopy in France: results of a prospective, nationwide survey.
por: Maximilien Barret, et al.
Publicado: (2013) -
CRF-EfficientUNet: An Improved UNet Framework for Polyp Segmentation in Colonoscopy Images With Combined Asymmetric Loss Function and CRF-RNN Layer
por: Le Thi Thu Hong, et al.
Publicado: (2021) -
Sensitivity to haptic sound-localisation cues
por: Mark D. Fletcher, et al.
Publicado: (2021) -
Quality Metrics and Indicators in Colonoscopy
por: Halim Bou Daher, et al.
Publicado: (2018)