An approach to rapidly assess sepsis through multi-biomarker host response using machine learning algorithm
Abstract Sepsis is a life-threatening condition and understanding the disease pathophysiology through the use of host immune response biomarkers is critical for patient stratification. Lack of accurate sepsis endotyping impedes clinicians from making timely decisions alongside insufficiencies in app...
Guardado en:
Autores principales: | Abha Umesh Sardesai, Ambalika Sanjeev Tanak, Subramaniam Krishnan, Deborah A. Striegel, Kevin L. Schully, Danielle V. Clark, Sriram Muthukumar, Shalini Prasad |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/770683cc8bca41dfbf6c5f85c3491587 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A new paradigm in sweat based wearable diagnostics biosensors using Room Temperature Ionic Liquids (RTILs)
por: Rujuta D. Munje, et al.
Publicado: (2017) -
Targeted On-Demand Screening of Pesticide Panel in Soil Runoff
por: Vikram Narayanan Dhamu, et al.
Publicado: (2021) -
Clinical factors associated with rapid treatment of sepsis.
por: Xing Song, et al.
Publicado: (2021) -
Identification of Potential Early Diagnostic Biomarkers of Sepsis
por: Li Z, et al.
Publicado: (2021) -
Influence of Pathogen Type on Neonatal Sepsis Biomarkers
por: Lyudmila Akhmaltdinova, et al.
Publicado: (2021)