Quantitative Super-Resolution Microscopy to Assess Adhesion of Neuronal Cells on Single-Layer Graphene Substrates

Single Layer Graphene (SLG) has emerged as a critically important nanomaterial due to its unique optical and electrical properties and has become a potential candidate for biomedical applications, biosensors, and tissue engineering. Due to its intrinsic 2D nature, SLG is an ideal surface for the dev...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Silvia Scalisi, Francesca Pennacchietti, Sandeep Keshavan, Nathan D. Derr, Alberto Diaspro, Dario Pisignano, Agnieszka Pierzynska-Mach, Silvia Dante, Francesca Cella Zanacchi
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/772470da720342799d975defdb283525
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Single Layer Graphene (SLG) has emerged as a critically important nanomaterial due to its unique optical and electrical properties and has become a potential candidate for biomedical applications, biosensors, and tissue engineering. Due to its intrinsic 2D nature, SLG is an ideal surface for the development of large-area biosensors and, due to its biocompatibility, can be easily exploited as a substrate for cell growth. The cellular response to SLG has been addressed in different studies with high cellular affinity for graphene often detected. Still, little is known about the molecular mechanism that drives/regulates the cellular adhesion and migration on SLG and SLG-coated interfaces with respect to other substrates<b>.</b> Within this scenario, we used quantitative super-resolution microscopy based on single-molecule localization to study the molecular distribution of adhesion proteins at the nanoscale level in cells growing on SLG and glass. In order to reveal the molecular mechanisms underlying the higher affinity of biological samples on SLG, we exploited stochastic optical reconstruction microscopy (STORM) imaging and cluster analysis, quantifying the super-resolution localization of the adhesion protein vinculin in neurons and clearly highlighting substrate-related correlations. Additionally, a comparison with an epithelial cell line (Chinese Hamster Ovary) revealed a cell dependent mechanism of interaction with SLG.