Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization
Menglong Liu,1 Tengfei Liu,1 Xiaorong Zhang,1 Zhiwen Jian,2 Hesheng Xia,2 Jiacai Yang,1 Xiaohong Hu,1 Malcolm Xing,1,3 Gaoxing Luo,1 Jun Wu1,41Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical Uni...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/772b029dcfbc48bf88c7ca7bf9940a50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:772b029dcfbc48bf88c7ca7bf9940a50 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:772b029dcfbc48bf88c7ca7bf9940a502021-12-02T09:24:53ZFabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization1178-2013https://doaj.org/article/772b029dcfbc48bf88c7ca7bf9940a502019-05-01T00:00:00Zhttps://www.dovepress.com/fabrication-of-kr-12-peptide-containing-hyaluronic-acid-immobilized-fi-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Menglong Liu,1 Tengfei Liu,1 Xiaorong Zhang,1 Zhiwen Jian,2 Hesheng Xia,2 Jiacai Yang,1 Xiaohong Hu,1 Malcolm Xing,1,3 Gaoxing Luo,1 Jun Wu1,41Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People’s Republic of China; 2State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, People’s Republic of China; 3Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; 4Department of Burns, the First Affiliated Hospital, SunYat-Sen University, Guangzhou 510080, People’s Republic of ChinaBackground: Designing a wound dressing that effectively prevents multi-drug-resistant bacterial infection and promotes angiogenesis and re-epithelialization is of great significance for wound management.Methods and results: In this study, a biocompatible composite membrane comprising biomimetic polydopamine-modified eggshell membrane nano/microfibres coated with KR-12 antimicrobial peptide and hyaluronic acid (HA) was developed in an eco-friendly manner. The physicochemical properties of the composite membrane were thoroughly characterized, and the results showed that the surface hydrophilicity and water absorption ability of the composite membrane were improved after the successive conjugation of the HA and the KR-12 peptide. Furthermore, the in vitrobiological results revealed that the composite membrane had excellent antibacterial activity against Gram-positive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, and it could prevent MRSA biofilm formation on its surface. Additionally, it promoted the proliferation of keratinocytes and human umbilical vein endothelial cells and increased the secretion of VEGF. Finally, an in vivo animal study indicated that the composite membrane could promote wound healing via accelerating angiogenesis and re-epithelialization, which were demonstrated by the enhanced expression of angiogenetic markers (CD31 and VEGF) and keratinocyte proliferation marker (PCNA), respectively.Conclusion: These results indicated that the composite membrane is a potential candidate of wound dressingsKeywords: antimicrobial peptides, hyaluronic acid, fibrous eggshell membrane, antibacterial activity, angiogenesis, re-epithelializationLiu MLiu TZhang XJian ZXia HYang JHu XXing MLuo GWu JDove Medical PressarticleAntimicrobial peptideshyaluronic acidfibrous eggshell membraneantibacterial activityangiogenesisre-epithelializationMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 3345-3360 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Antimicrobial peptides hyaluronic acid fibrous eggshell membrane antibacterial activity angiogenesis re-epithelialization Medicine (General) R5-920 |
spellingShingle |
Antimicrobial peptides hyaluronic acid fibrous eggshell membrane antibacterial activity angiogenesis re-epithelialization Medicine (General) R5-920 Liu M Liu T Zhang X Jian Z Xia H Yang J Hu X Xing M Luo G Wu J Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
description |
Menglong Liu,1 Tengfei Liu,1 Xiaorong Zhang,1 Zhiwen Jian,2 Hesheng Xia,2 Jiacai Yang,1 Xiaohong Hu,1 Malcolm Xing,1,3 Gaoxing Luo,1 Jun Wu1,41Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People’s Republic of China; 2State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, People’s Republic of China; 3Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; 4Department of Burns, the First Affiliated Hospital, SunYat-Sen University, Guangzhou 510080, People’s Republic of ChinaBackground: Designing a wound dressing that effectively prevents multi-drug-resistant bacterial infection and promotes angiogenesis and re-epithelialization is of great significance for wound management.Methods and results: In this study, a biocompatible composite membrane comprising biomimetic polydopamine-modified eggshell membrane nano/microfibres coated with KR-12 antimicrobial peptide and hyaluronic acid (HA) was developed in an eco-friendly manner. The physicochemical properties of the composite membrane were thoroughly characterized, and the results showed that the surface hydrophilicity and water absorption ability of the composite membrane were improved after the successive conjugation of the HA and the KR-12 peptide. Furthermore, the in vitrobiological results revealed that the composite membrane had excellent antibacterial activity against Gram-positive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli, and it could prevent MRSA biofilm formation on its surface. Additionally, it promoted the proliferation of keratinocytes and human umbilical vein endothelial cells and increased the secretion of VEGF. Finally, an in vivo animal study indicated that the composite membrane could promote wound healing via accelerating angiogenesis and re-epithelialization, which were demonstrated by the enhanced expression of angiogenetic markers (CD31 and VEGF) and keratinocyte proliferation marker (PCNA), respectively.Conclusion: These results indicated that the composite membrane is a potential candidate of wound dressingsKeywords: antimicrobial peptides, hyaluronic acid, fibrous eggshell membrane, antibacterial activity, angiogenesis, re-epithelialization |
format |
article |
author |
Liu M Liu T Zhang X Jian Z Xia H Yang J Hu X Xing M Luo G Wu J |
author_facet |
Liu M Liu T Zhang X Jian Z Xia H Yang J Hu X Xing M Luo G Wu J |
author_sort |
Liu M |
title |
Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
title_short |
Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
title_full |
Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
title_fullStr |
Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
title_full_unstemmed |
Fabrication of KR-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
title_sort |
fabrication of kr-12 peptide-containing hyaluronic acid immobilized fibrous eggshell membrane effectively kills multi-drug-resistant bacteria, promotes angiogenesis and accelerates re-epithelialization |
publisher |
Dove Medical Press |
publishDate |
2019 |
url |
https://doaj.org/article/772b029dcfbc48bf88c7ca7bf9940a50 |
work_keys_str_mv |
AT lium fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT liut fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT zhangx fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT jianz fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT xiah fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT yangj fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT hux fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT xingm fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT luog fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization AT wuj fabricationofkr12peptidecontaininghyaluronicacidimmobilizedfibrouseggshellmembraneeffectivelykillsmultidrugresistantbacteriapromotesangiogenesisandacceleratesreepithelialization |
_version_ |
1718398128891101184 |