The contribution of human agricultural activities to increasing evapotranspiration is significantly greater than climate change effect over Heihe agricultural region

Abstract Evapotranspiration (ET) is a major component linking the water, energy, and carbon cycles. Understanding changes in ET and the relative contribution rates of human activity and of climate change at the basin scale is important for sound water resources management. In this study, changes in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Minzhong Zou, Jun Niu, Shaozhong Kang, Xiaolin Li, Hongna Lu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/7735c5fdb8624eca8e92179caa8bbcf1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Evapotranspiration (ET) is a major component linking the water, energy, and carbon cycles. Understanding changes in ET and the relative contribution rates of human activity and of climate change at the basin scale is important for sound water resources management. In this study, changes in ET in the Heihe agricultural region in northwest China during 1984–2014 were examined using remotely-sensed ET data with the Soil and Water Assessment Tool (SWAT). Correlation analysis identified the dominant factors that influence change in ET per unit area and those that influence change in total ET. Factor analysis identified the relative contribution rates of the dominant factors in each case. The results show that human activity, which includes factors for agronomy and irrigation, and climate change, including factors for precipitation and relative humidity, both contribute to increases in ET per unit area at rates of 60.93% and 28.01%, respectively. Human activity, including the same factors, and climate change, including factors for relative humidity and wind speed, contribute to increases in total ET at rates of 53.86% and 35.68%, respectively. Overall, in the Heihe agricultural region, the contribution of human agricultural activities to increased ET was significantly greater than that of climate change.