Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning
Abstract Quantitative phase microscopy (QPM) enables studies of living biological systems without exogenous labels. To increase the utility of QPM, machine-learning methods have been adapted to extract additional information from the quantitative phase data. Previous QPM approaches focused on fluid...
Enregistré dans:
Auteurs principaux: | Diane N. H. Kim, Alexander A. Lim, Michael A. Teitell |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7752a033f33d43dea83c773f3e54baa9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
par: Hassaan Majeed, et autres
Publié: (2018) -
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy
par: Sixian You, et autres
Publié: (2018) -
Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis
par: Francesca R. Bertani, et autres
Publié: (2017) -
Machine Learning Based Embedded Code Multi-Label Classification
par: Yu Zhou, et autres
Publié: (2021) -
Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.
par: Steffen Dietzel, et autres
Publié: (2014)