Rapid, label-free classification of tumor-reactive T cell killing with quantitative phase microscopy and machine learning
Abstract Quantitative phase microscopy (QPM) enables studies of living biological systems without exogenous labels. To increase the utility of QPM, machine-learning methods have been adapted to extract additional information from the quantitative phase data. Previous QPM approaches focused on fluid...
Guardado en:
Autores principales: | Diane N. H. Kim, Alexander A. Lim, Michael A. Teitell |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7752a033f33d43dea83c773f3e54baa9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM)
por: Hassaan Majeed, et al.
Publicado: (2018) -
Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy
por: Sixian You, et al.
Publicado: (2018) -
Classification of M1/M2-polarized human macrophages by label-free hyperspectral reflectance confocal microscopy and multivariate analysis
por: Francesca R. Bertani, et al.
Publicado: (2017) -
Machine Learning Based Embedded Code Multi-Label Classification
por: Yu Zhou, et al.
Publicado: (2021) -
Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy.
por: Steffen Dietzel, et al.
Publicado: (2014)