A Bayesian semi-parametric model for thermal proteome profiling
Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more compreh...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7779bba951a04cb6ad7afed9774db400 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7779bba951a04cb6ad7afed9774db400 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7779bba951a04cb6ad7afed9774db4002021-12-02T16:32:07ZA Bayesian semi-parametric model for thermal proteome profiling10.1038/s42003-021-02306-82399-3642https://doaj.org/article/7779bba951a04cb6ad7afed9774db4002021-06-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02306-8https://doaj.org/toc/2399-3642Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more comprehensive and sensitive than standard data analysis methods, identified new putative targets and off-targets from published TPP datasets.Siqi FangPaul D. W. KirkMarcus BantscheffKathryn S. LilleyOliver M. CrookNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Siqi Fang Paul D. W. Kirk Marcus Bantscheff Kathryn S. Lilley Oliver M. Crook A Bayesian semi-parametric model for thermal proteome profiling |
description |
Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more comprehensive and sensitive than standard data analysis methods, identified new putative targets and off-targets from published TPP datasets. |
format |
article |
author |
Siqi Fang Paul D. W. Kirk Marcus Bantscheff Kathryn S. Lilley Oliver M. Crook |
author_facet |
Siqi Fang Paul D. W. Kirk Marcus Bantscheff Kathryn S. Lilley Oliver M. Crook |
author_sort |
Siqi Fang |
title |
A Bayesian semi-parametric model for thermal proteome profiling |
title_short |
A Bayesian semi-parametric model for thermal proteome profiling |
title_full |
A Bayesian semi-parametric model for thermal proteome profiling |
title_fullStr |
A Bayesian semi-parametric model for thermal proteome profiling |
title_full_unstemmed |
A Bayesian semi-parametric model for thermal proteome profiling |
title_sort |
bayesian semi-parametric model for thermal proteome profiling |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/7779bba951a04cb6ad7afed9774db400 |
work_keys_str_mv |
AT siqifang abayesiansemiparametricmodelforthermalproteomeprofiling AT pauldwkirk abayesiansemiparametricmodelforthermalproteomeprofiling AT marcusbantscheff abayesiansemiparametricmodelforthermalproteomeprofiling AT kathrynslilley abayesiansemiparametricmodelforthermalproteomeprofiling AT olivermcrook abayesiansemiparametricmodelforthermalproteomeprofiling AT siqifang bayesiansemiparametricmodelforthermalproteomeprofiling AT pauldwkirk bayesiansemiparametricmodelforthermalproteomeprofiling AT marcusbantscheff bayesiansemiparametricmodelforthermalproteomeprofiling AT kathrynslilley bayesiansemiparametricmodelforthermalproteomeprofiling AT olivermcrook bayesiansemiparametricmodelforthermalproteomeprofiling |
_version_ |
1718383817477062656 |