A Bayesian semi-parametric model for thermal proteome profiling

Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more compreh...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Siqi Fang, Paul D. W. Kirk, Marcus Bantscheff, Kathryn S. Lilley, Oliver M. Crook
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/7779bba951a04cb6ad7afed9774db400
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7779bba951a04cb6ad7afed9774db400
record_format dspace
spelling oai:doaj.org-article:7779bba951a04cb6ad7afed9774db4002021-12-02T16:32:07ZA Bayesian semi-parametric model for thermal proteome profiling10.1038/s42003-021-02306-82399-3642https://doaj.org/article/7779bba951a04cb6ad7afed9774db4002021-06-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02306-8https://doaj.org/toc/2399-3642Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more comprehensive and sensitive than standard data analysis methods, identified new putative targets and off-targets from published TPP datasets.Siqi FangPaul D. W. KirkMarcus BantscheffKathryn S. LilleyOliver M. CrookNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Siqi Fang
Paul D. W. Kirk
Marcus Bantscheff
Kathryn S. Lilley
Oliver M. Crook
A Bayesian semi-parametric model for thermal proteome profiling
description Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more comprehensive and sensitive than standard data analysis methods, identified new putative targets and off-targets from published TPP datasets.
format article
author Siqi Fang
Paul D. W. Kirk
Marcus Bantscheff
Kathryn S. Lilley
Oliver M. Crook
author_facet Siqi Fang
Paul D. W. Kirk
Marcus Bantscheff
Kathryn S. Lilley
Oliver M. Crook
author_sort Siqi Fang
title A Bayesian semi-parametric model for thermal proteome profiling
title_short A Bayesian semi-parametric model for thermal proteome profiling
title_full A Bayesian semi-parametric model for thermal proteome profiling
title_fullStr A Bayesian semi-parametric model for thermal proteome profiling
title_full_unstemmed A Bayesian semi-parametric model for thermal proteome profiling
title_sort bayesian semi-parametric model for thermal proteome profiling
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/7779bba951a04cb6ad7afed9774db400
work_keys_str_mv AT siqifang abayesiansemiparametricmodelforthermalproteomeprofiling
AT pauldwkirk abayesiansemiparametricmodelforthermalproteomeprofiling
AT marcusbantscheff abayesiansemiparametricmodelforthermalproteomeprofiling
AT kathrynslilley abayesiansemiparametricmodelforthermalproteomeprofiling
AT olivermcrook abayesiansemiparametricmodelforthermalproteomeprofiling
AT siqifang bayesiansemiparametricmodelforthermalproteomeprofiling
AT pauldwkirk bayesiansemiparametricmodelforthermalproteomeprofiling
AT marcusbantscheff bayesiansemiparametricmodelforthermalproteomeprofiling
AT kathrynslilley bayesiansemiparametricmodelforthermalproteomeprofiling
AT olivermcrook bayesiansemiparametricmodelforthermalproteomeprofiling
_version_ 1718383817477062656