A Bayesian semi-parametric model for thermal proteome profiling
Fang et al. develop a Bayesian data analysis approach that is better suited to the analysis of Thermal Proteome Profiling (TPP) data than existing data analysis approaches that have limitations with respect to deviations from the expected sigmoid data behaviour. Their approach, which is more compreh...
Enregistré dans:
| Auteurs principaux: | Siqi Fang, Paul D. W. Kirk, Marcus Bantscheff, Kathryn S. Lilley, Oliver M. Crook |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/7779bba951a04cb6ad7afed9774db400 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Proteome-wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP
par: Sindhuja Sridharan, et autres
Publié: (2019) -
A computational method for detection of ligand-binding proteins from dose range thermal proteome profiles
par: Nils Kurzawa, et autres
Publié: (2020) -
Spatiotemporal proteomic profiling of the pro-inflammatory response to lipopolysaccharide in the THP-1 human leukaemia cell line
par: Claire M. Mulvey, et autres
Publié: (2021) -
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics
par: Aikaterini Geladaki, et autres
Publié: (2019) -
Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
par: Gang Li, et autres
Publié: (2021)