Modeling transcriptomic age using knowledge-primed artificial neural networks

Abstract The development of ‘age clocks’, machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current cloc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicholas Holzscheck, Cassandra Falckenhayn, Jörn Söhle, Boris Kristof, Ralf Siegner, André Werner, Janka Schössow, Clemens Jürgens, Henry Völzke, Horst Wenck, Marc Winnefeld, Elke Grönniger, Lars Kaderali
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/777c395850e541569fc03b8d41e94be4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The development of ‘age clocks’, machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current clocks offer little insight into the molecular biological processes driving aging, and their inner workings often remain non-transparent. Here we propose a new type of age clock, one that couples predictivity with interpretability of the underlying biology, achieved through the incorporation of prior knowledge into the model design. The clock, an artificial neural network constructed according to well-described biological pathways, allows the prediction of age from gene expression data of skin tissue with high accuracy, while at the same time capturing and revealing aging states of the pathways driving the prediction. The model recapitulates known associations of aging gene knockdowns in simulation experiments and demonstrates its utility in deciphering the main pathways by which accelerated aging conditions such as Hutchinson–Gilford progeria syndrome, as well as pro-longevity interventions like caloric restriction, exert their effects.