Modeling transcriptomic age using knowledge-primed artificial neural networks
Abstract The development of ‘age clocks’, machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current cloc...
Guardado en:
Autores principales: | Nicholas Holzscheck, Cassandra Falckenhayn, Jörn Söhle, Boris Kristof, Ralf Siegner, André Werner, Janka Schössow, Clemens Jürgens, Henry Völzke, Horst Wenck, Marc Winnefeld, Elke Grönniger, Lars Kaderali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/777c395850e541569fc03b8d41e94be4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diophantine approximation with one prime, two squares of primes and one kth power of a prime
por: Gambini Alessandro
Publicado: (2021) -
Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.
por: Bettina Knapp, et al.
Publicado: (2013) -
Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation
por: Joachim Pircher, et al.
Publicado: (2018) -
The honey bee epigenomes: differential methylation of brain DNA in queens and workers.
por: Frank Lyko, et al.
Publicado: (2010) -
A method to analyze the influence of mechanical strain on dermal collagen morphologies
por: Maximilian Witte, et al.
Publicado: (2021)