Using publicly available satellite imagery and deep learning to understand economic well-being in Africa

It is generally difficult to scale derived estimates and understand the accuracy across locations for passively-collected data sources, such as mobile phones and satellite imagery. Here the authors show that their trained deep learning models are able to explain 70% of the variation in ground-measur...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang, David Lobell, Stefano Ermon, Marshall Burke
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/7795998e04994473a909cfaf24b6daf9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares