Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020)
The study of heat and water fluxes is one of the most essential components for understanding the interactions and exchanges between the ocean and atmosphere. Heat transfer across the air–sea interface is an important process in ocean–atmosphere dynamics. In this study, a 40-year (1981–2020) high-res...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7797a178975b4eb8b6a2808689c79fa4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7797a178975b4eb8b6a2808689c79fa4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7797a178975b4eb8b6a2808689c79fa42021-11-25T18:04:59ZVariability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020)10.3390/jmse91112762077-1312https://doaj.org/article/7797a178975b4eb8b6a2808689c79fa42021-11-01T00:00:00Zhttps://www.mdpi.com/2077-1312/9/11/1276https://doaj.org/toc/2077-1312The study of heat and water fluxes is one of the most essential components for understanding the interactions and exchanges between the ocean and atmosphere. Heat transfer across the air–sea interface is an important process in ocean–atmosphere dynamics. In this study, a 40-year (1981–2020) high-resolution (0.25° × 0.25°) ERA-5 reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to estimate the variability and trends of heat and water flux components in the Red Sea. The results show that the surface net heat flux is negative (loss) in the Northern Red Sea (NRS) and positive (gain) in the Southern Red Sea (SRS). The highest seasonal surface net heat flux is observed in the spring and early summer, while the lowest is reported in the winter. A significant linear trend is found in the surface net heat flux over the NRS and SRS, with values of about −0.12 ± 0.052 (W/m<sup>2</sup>)/yr and +0.20 ± 0.021 (W/m<sup>2</sup>)/yr, respectively. The annual mean surface net water flux loss to the atmosphere over the entire Red Sea is +1.46 ± 0.23 m/yr. The seasonal surface net water flux peak occurs in winter as a result of the northeast monsoon wind, which increases evaporation rate over the whole length of the Red Sea. The highest surface net water flux (+2.1 m/yr) is detected during 2020, while the lowest value (+1.3 m/yr) is observed during 1985.Hazem NagyBayoumy MohamedOmneya IbrahimMDPI AGarticleRed Seasurface net heat fluxwater fluxevaporationtrendERA-5Naval architecture. Shipbuilding. Marine engineeringVM1-989OceanographyGC1-1581ENJournal of Marine Science and Engineering, Vol 9, Iss 1276, p 1276 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Red Sea surface net heat flux water flux evaporation trend ERA-5 Naval architecture. Shipbuilding. Marine engineering VM1-989 Oceanography GC1-1581 |
spellingShingle |
Red Sea surface net heat flux water flux evaporation trend ERA-5 Naval architecture. Shipbuilding. Marine engineering VM1-989 Oceanography GC1-1581 Hazem Nagy Bayoumy Mohamed Omneya Ibrahim Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
description |
The study of heat and water fluxes is one of the most essential components for understanding the interactions and exchanges between the ocean and atmosphere. Heat transfer across the air–sea interface is an important process in ocean–atmosphere dynamics. In this study, a 40-year (1981–2020) high-resolution (0.25° × 0.25°) ERA-5 reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to estimate the variability and trends of heat and water flux components in the Red Sea. The results show that the surface net heat flux is negative (loss) in the Northern Red Sea (NRS) and positive (gain) in the Southern Red Sea (SRS). The highest seasonal surface net heat flux is observed in the spring and early summer, while the lowest is reported in the winter. A significant linear trend is found in the surface net heat flux over the NRS and SRS, with values of about −0.12 ± 0.052 (W/m<sup>2</sup>)/yr and +0.20 ± 0.021 (W/m<sup>2</sup>)/yr, respectively. The annual mean surface net water flux loss to the atmosphere over the entire Red Sea is +1.46 ± 0.23 m/yr. The seasonal surface net water flux peak occurs in winter as a result of the northeast monsoon wind, which increases evaporation rate over the whole length of the Red Sea. The highest surface net water flux (+2.1 m/yr) is detected during 2020, while the lowest value (+1.3 m/yr) is observed during 1985. |
format |
article |
author |
Hazem Nagy Bayoumy Mohamed Omneya Ibrahim |
author_facet |
Hazem Nagy Bayoumy Mohamed Omneya Ibrahim |
author_sort |
Hazem Nagy |
title |
Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
title_short |
Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
title_full |
Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
title_fullStr |
Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
title_full_unstemmed |
Variability of Heat and Water Fluxes in the Red Sea Using ERA5 Data (1981–2020) |
title_sort |
variability of heat and water fluxes in the red sea using era5 data (1981–2020) |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/7797a178975b4eb8b6a2808689c79fa4 |
work_keys_str_mv |
AT hazemnagy variabilityofheatandwaterfluxesintheredseausingera5data19812020 AT bayoumymohamed variabilityofheatandwaterfluxesintheredseausingera5data19812020 AT omneyaibrahim variabilityofheatandwaterfluxesintheredseausingera5data19812020 |
_version_ |
1718411623503233024 |