Examination of turbulence impacts on ultra-short-term wind power and speed forecasts with machine learning
Wind turbines’ economic and secure operation can be optimized through accurate ultra-short-term wind power and speed forecasts. Turbulence, considered as a local short-term physical wind phenomenon, affects wind power generation. This paper investigates the use of turbulence intensity for ultra-shor...
Guardado en:
Autores principales: | Hao Chen, Yngve Birkelund, Fuqing Yuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77b7bce11f8f49fe8f7fcecee7b15360 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probability distributions for wind speed volatility characteristics: A case study of Northern Norway
por: Hao Chen, et al.
Publicado: (2021) -
A Novel Hybrid Neural Network-Based Day-Ahead Wind Speed Forecasting Technique
por: Mehdi Abbasipour, et al.
Publicado: (2021) -
The Importance of Wake Meandering on Wind Turbine Fatigue Loads in Wake
por: Jennifer Marie Rinker, et al.
Publicado: (2021) -
MACHINE-TRANSFORMER UNITS FOR WIND TURBINES
por: V.I. Panchenko, et al.
Publicado: (2016) -
Short term prediction of wind speed based on long-short term memory networks
por: Salman Umar T., et al.
Publicado: (2021)