Reduction of atherosclerotic lesions in rabbits treated with etoposide associated with cholesterol-rich nanoemulsions

Elaine R Tavares1, Fatima R Freitas1, Jayme Diament1, Raul C Maranhão1,21Heart Institute of the Medical School Hospital (InCor), University of São Paulo, São Paulo, Brazil; 2Faculty of Pharmaceutical Sciences, University of São Paulo, S&...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tavares ER, Freitas FR, Diament JD, Maranhão RC
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2011
Materias:
Acceso en línea:https://doaj.org/article/77c49023b15a461bacc1b02bd73b8080
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Elaine R Tavares1, Fatima R Freitas1, Jayme Diament1, Raul C Maranhão1,21Heart Institute of the Medical School Hospital (InCor), University of São Paulo, São Paulo, Brazil; 2Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, BrazilObjectives: Cholesterol-rich nanoemulsions (LDE) bind to low-density lipoprotein (LDL) receptors and after injection into the bloodstream concentrate in aortas of atherosclerotic rabbits. Association of paclitaxel with LDE markedly reduces the lesions. In previous studies, treatment of refractory cancer patients with etoposide associated with LDE had been shown devoid of toxicity. In this study, the ability of etoposide to reduce lesions and inflammatory factors in atherosclerotic rabbits was investigated.Methods: Eighteen New Zealand rabbits were fed a 1% cholesterol diet for 60 days. Starting from day 30, nine animals were treated with four weekly intravenous injections of etoposide oleate (6 mg/kg) associated with LDE, and nine control animals were treated with saline solution injections.Results: LDE-etoposide reduced the lesion areas of cholesterol-fed animals by 85% and intima width by 50% and impaired macrophage and smooth muscle cell invasion of the intima. Treatment also markedly reduced the protein expression of lipoprotein receptors (LDL receptor, LDL-related protein-1, cluster of differentiation 36, and scavenger receptor class B member 1), inflammatory cytokines (interleukin-1β and tumor necrosis factor-α), matrix metallopeptidase-9, and cell proliferation markers (topoisomerase IIα and tubulin).Conclusion: The ability of LDE-etoposide to strongly reduce the lesion area and the inflammatory process warrants the great therapeutic potential of this novel preparation to target the inflammatory-proliferative basic mechanisms of the disease.Keywords: atherosclerosis treatment, drug delivery, LDL-receptors