Parsimonious Models of Precipitation Phase Derived from Random Forest Knowledge: Intercomparing Logistic Models, Neural Networks, and Random Forest Models
The precipitation phase (PP) affects the hydrologic cycle which in turn affects the climate system. A lower ratio of snow to rain due to climate change affects timing and duration of the stream flow. Thus, more knowledge about the PP occurrence and drivers is necessary and especially important in ci...
Guardado en:
Autores principales: | Lenin Campozano, Leandro Robaina, Luis Felipe Gualco, Luis Maisincho, Marcos Villacís, Thomas Condom, Daniela Ballari, Carlos Páez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77c87c05d30c48fbb321f6d3132007bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhancing asphaltene precipitation modeling by cubic-PR solid model using thermodynamic correlations and averaging techniques
por: Aktham E. Shoukry, et al.
Publicado: (2019) -
Precipitation in the Czech Republic in Light of Subjective and Objective Classifications of Circulation Types
por: Jan Řehoř, et al.
Publicado: (2021) -
Evaluating Precipitation Features and Rainfall Characteristics in a Multi‐Scale Modeling Framework
por: Jiun‐Dar Chern, et al.
Publicado: (2020) -
Detecting change in precipitation indices using observed (1977–2016) and modeled future climate data in Portland, Oregon, USA
por: Alexis Kirsten Cooley, et al.
Publicado: (2021) -
Phenological behavior of Atlas cedar (Cedrus atlantica) forest to snow and precipitation variability in Boutaleb and Babors Mountains, Algeria
por: Khaled Missaoui, et al.
Publicado: (2019)