Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning
The authors employ a polygon-based ultrafast delay scanner and a deep learning framework for acquiring stimulated Raman scattering spectrum with high spectral and temporal resolution. They demonstrate high-speed imaging and tracking of multiple biomolecules in the fingerprint region.
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | article |
| Language: | EN |
| Published: |
Nature Portfolio
2021
|
| Subjects: | |
| Online Access: | https://doaj.org/article/77cda430a1a544d5955b9f84b305e56e |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The authors employ a polygon-based ultrafast delay scanner and a deep learning framework for acquiring stimulated Raman scattering spectrum with high spectral and temporal resolution. They demonstrate high-speed imaging and tracking of multiple biomolecules in the fingerprint region. |
|---|