Glaucoma classification based on scanning laser ophthalmoscopic images using a deep learning ensemble method.
This study aimed to assess the utility of optic nerve head (onh) en-face images, captured with scanning laser ophthalmoscopy (slo) during standard optical coherence tomography (oct) imaging of the posterior segment, and demonstrate the potential of deep learning (dl) ensemble method that operates in...
Guardado en:
Autores principales: | Dominika Sułot, David Alonso-Caneiro, Paweł Ksieniewicz, Patrycja Krzyzanowska-Berkowska, D Robert Iskander |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77cdf73337d745b49629b1d2f6859210 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Adaptive optics scanning laser ophthalmoscope imaging: technology update
por: Merino D, et al.
Publicado: (2016) -
New retinal imaging for the visualization and analysis of vitreoretinal interface (VRI) by short-wavelength scanning laser ophthalmoscope (swSLO)
por: Vingolo EM, et al.
Publicado: (2011) -
Glaucomatous and age-related changes in corneal pulsation shape. The ocular dicrotism.
por: Monika E Danielewska, et al.
Publicado: (2014) -
An ensemble framework based on Deep CNNs architecture for glaucoma classification using fundus photography
por: Aziz-ur-Rehman, et al.
Publicado: (2021) -
Classification of colorectal tissue images from high throughput tissue microarrays by ensemble deep learning methods
por: Huu-Giao Nguyen, et al.
Publicado: (2021)