Classification of unlabeled online media
Abstract This work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user...
Guardado en:
Autores principales: | Sakthi Kumar Arul Prakash, Conrad Tucker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77dccb97c90d4dd4af3c9ddb0ef89e84 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of biases in remote photoplethysmography methods
por: Ananyananda Dasari, et al.
Publicado: (2021) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
por: Jason A. Fries, et al.
Publicado: (2019) -
Screening drug-target interactions with positive-unlabeled learning
por: Lihong Peng, et al.
Publicado: (2017) -
Text Classification Model Enhanced by Unlabeled Data for LaTeX Formula
por: Hua Cheng, et al.
Publicado: (2021) -
Millisecond dynamics of an unlabeled amino acid transporter
por: Tina R. Matin, et al.
Publicado: (2020)