Classification of unlabeled online media
Abstract This work investigates the ability to classify misinformation in online social media networks in a manner that avoids the need for ground truth labels. Rather than approach the classification problem as a task for humans or machine learning algorithms, this work leverages user–user and user...
Enregistré dans:
Auteurs principaux: | Sakthi Kumar Arul Prakash, Conrad Tucker |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/77dccb97c90d4dd4af3c9ddb0ef89e84 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Evaluation of biases in remote photoplethysmography methods
par: Ananyananda Dasari, et autres
Publié: (2021) -
Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences
par: Jason A. Fries, et autres
Publié: (2019) -
Screening drug-target interactions with positive-unlabeled learning
par: Lihong Peng, et autres
Publié: (2017) -
Text Classification Model Enhanced by Unlabeled Data for LaTeX Formula
par: Hua Cheng, et autres
Publié: (2021) -
Millisecond dynamics of an unlabeled amino acid transporter
par: Tina R. Matin, et autres
Publié: (2020)