In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehens...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries. |
---|