In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics

Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehens...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi Yang, Xiaohui Liu, Chengpin Shen, Yu Lin, Pengyuan Yang, Liang Qiao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries.