In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehens...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:77e3c40bed5d4202a8599e1247e8d409 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:77e3c40bed5d4202a8599e1247e8d4092021-12-02T17:31:41ZIn silico spectral libraries by deep learning facilitate data-independent acquisition proteomics10.1038/s41467-019-13866-z2041-1723https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d4092020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13866-zhttps://doaj.org/toc/2041-1723Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries.Yi YangXiaohui LiuChengpin ShenYu LinPengyuan YangLiang QiaoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yi Yang Xiaohui Liu Chengpin Shen Yu Lin Pengyuan Yang Liang Qiao In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
description |
Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries. |
format |
article |
author |
Yi Yang Xiaohui Liu Chengpin Shen Yu Lin Pengyuan Yang Liang Qiao |
author_facet |
Yi Yang Xiaohui Liu Chengpin Shen Yu Lin Pengyuan Yang Liang Qiao |
author_sort |
Yi Yang |
title |
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
title_short |
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
title_full |
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
title_fullStr |
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
title_full_unstemmed |
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
title_sort |
in silico spectral libraries by deep learning facilitate data-independent acquisition proteomics |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409 |
work_keys_str_mv |
AT yiyang insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics AT xiaohuiliu insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics AT chengpinshen insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics AT yulin insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics AT pengyuanyang insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics AT liangqiao insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics |
_version_ |
1718380560655581184 |