In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics

Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehens...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi Yang, Xiaohui Liu, Chengpin Shen, Yu Lin, Pengyuan Yang, Liang Qiao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:77e3c40bed5d4202a8599e1247e8d409
record_format dspace
spelling oai:doaj.org-article:77e3c40bed5d4202a8599e1247e8d4092021-12-02T17:31:41ZIn silico spectral libraries by deep learning facilitate data-independent acquisition proteomics10.1038/s41467-019-13866-z2041-1723https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d4092020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13866-zhttps://doaj.org/toc/2041-1723Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries.Yi YangXiaohui LiuChengpin ShenYu LinPengyuan YangLiang QiaoNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yi Yang
Xiaohui Liu
Chengpin Shen
Yu Lin
Pengyuan Yang
Liang Qiao
In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
description Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehensive DIA experiments than DDA-based libraries.
format article
author Yi Yang
Xiaohui Liu
Chengpin Shen
Yu Lin
Pengyuan Yang
Liang Qiao
author_facet Yi Yang
Xiaohui Liu
Chengpin Shen
Yu Lin
Pengyuan Yang
Liang Qiao
author_sort Yi Yang
title In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
title_short In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
title_full In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
title_fullStr In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
title_full_unstemmed In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
title_sort in silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409
work_keys_str_mv AT yiyang insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
AT xiaohuiliu insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
AT chengpinshen insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
AT yulin insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
AT pengyuanyang insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
AT liangqiao insilicospectrallibrariesbydeeplearningfacilitatedataindependentacquisitionproteomics
_version_ 1718380560655581184