In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics
Data-independent acquisition (DIA) is an emerging technology in proteomics but it typically relies on spectral libraries built by data-dependent acquisition (DDA). Here, the authors use deep learning to generate in silico spectral libraries directly from protein sequences that enable more comprehens...
Guardado en:
Autores principales: | Yi Yang, Xiaohui Liu, Chengpin Shen, Yu Lin, Pengyuan Yang, Liang Qiao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/77e3c40bed5d4202a8599e1247e8d409 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries
por: Dorte B. Bekker-Jensen, et al.
Publicado: (2020) -
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Tomi Suomi, et al.
Publicado: (2017) -
A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics
por: Harshi Weerakoon, et al.
Publicado: (2020) -
Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry
por: Brian C. Searle, et al.
Publicado: (2018) -
Author Correction: Arabidopsis proteome and the mass spectral assay library
por: Huoming Zhang, et al.
Publicado: (2021)