Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia

Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Rini Silvi
Formato: article
Lenguaje:EN
Publicado: Department of Mathematics, UIN Sunan Ampel Surabaya 2018
Materias:
Acceso en línea:https://doaj.org/article/7805cd4899904836bc52c014e95a035f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:7805cd4899904836bc52c014e95a035f
record_format dspace
spelling oai:doaj.org-article:7805cd4899904836bc52c014e95a035f2021-12-02T17:37:07ZAnalisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia2527-31592527-316710.15642/mantik.2018.4.1.22-31https://doaj.org/article/7805cd4899904836bc52c014e95a035f2018-05-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/263https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under non-hierarchical cluster analysis, is a simple and easy to implement method. On the other hand, Centroid Linkage clustering, which belongs to hierarchical cluster analysis, is useful in handling outliers by preventing them skewing the cluster analysis. To keep it simple, outliers are often removed even though outliers often contain important information. HIV/AIDS is a serious challenge for global public health since HIV/AIDS is an infectious disease attacking body’s immune system that in turn lowering the ability to fight infections which in the end causing death. HIV/AIDS indicators data in Indonesia contain outliers. This research uses gap statistic to define the number of clusters based on HIV/AIDS indicators that groups Indonesia provinces into 7 clusters. By comparing S­w­/S­b ratio, Centroid Linkage clustering is more homogenous than K-means clustering. Using clustering, the government shall be able to create a better policy for fighting HIV/AIDS based on the dominant indicators in each cluster.Rini SilviDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleClusteringCentroid LinkageK-meansMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 1, Pp 22-31 (2018)
institution DOAJ
collection DOAJ
language EN
topic Clustering
Centroid Linkage
K-means
Mathematics
QA1-939
spellingShingle Clustering
Centroid Linkage
K-means
Mathematics
QA1-939
Rini Silvi
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
description Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under non-hierarchical cluster analysis, is a simple and easy to implement method. On the other hand, Centroid Linkage clustering, which belongs to hierarchical cluster analysis, is useful in handling outliers by preventing them skewing the cluster analysis. To keep it simple, outliers are often removed even though outliers often contain important information. HIV/AIDS is a serious challenge for global public health since HIV/AIDS is an infectious disease attacking body’s immune system that in turn lowering the ability to fight infections which in the end causing death. HIV/AIDS indicators data in Indonesia contain outliers. This research uses gap statistic to define the number of clusters based on HIV/AIDS indicators that groups Indonesia provinces into 7 clusters. By comparing S­w­/S­b ratio, Centroid Linkage clustering is more homogenous than K-means clustering. Using clustering, the government shall be able to create a better policy for fighting HIV/AIDS based on the dominant indicators in each cluster.
format article
author Rini Silvi
author_facet Rini Silvi
author_sort Rini Silvi
title Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
title_short Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
title_full Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
title_fullStr Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
title_full_unstemmed Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
title_sort analisis cluster dengan data outlier menggunakan centroid linkage dan k-means clustering untuk pengelompokkan indikator hiv/aids di indonesia
publisher Department of Mathematics, UIN Sunan Ampel Surabaya
publishDate 2018
url https://doaj.org/article/7805cd4899904836bc52c014e95a035f
work_keys_str_mv AT rinisilvi analisisclusterdengandataoutliermenggunakancentroidlinkagedankmeansclusteringuntukpengelompokkanindikatorhivaidsdiindonesia
_version_ 1718379890516951040