Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7805cd4899904836bc52c014e95a035f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:7805cd4899904836bc52c014e95a035f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:7805cd4899904836bc52c014e95a035f2021-12-02T17:37:07ZAnalisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia2527-31592527-316710.15642/mantik.2018.4.1.22-31https://doaj.org/article/7805cd4899904836bc52c014e95a035f2018-05-01T00:00:00Zhttp://jurnalsaintek.uinsby.ac.id/index.php/mantik/article/view/263https://doaj.org/toc/2527-3159https://doaj.org/toc/2527-3167Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under non-hierarchical cluster analysis, is a simple and easy to implement method. On the other hand, Centroid Linkage clustering, which belongs to hierarchical cluster analysis, is useful in handling outliers by preventing them skewing the cluster analysis. To keep it simple, outliers are often removed even though outliers often contain important information. HIV/AIDS is a serious challenge for global public health since HIV/AIDS is an infectious disease attacking body’s immune system that in turn lowering the ability to fight infections which in the end causing death. HIV/AIDS indicators data in Indonesia contain outliers. This research uses gap statistic to define the number of clusters based on HIV/AIDS indicators that groups Indonesia provinces into 7 clusters. By comparing Sw/Sb ratio, Centroid Linkage clustering is more homogenous than K-means clustering. Using clustering, the government shall be able to create a better policy for fighting HIV/AIDS based on the dominant indicators in each cluster.Rini SilviDepartment of Mathematics, UIN Sunan Ampel SurabayaarticleClusteringCentroid LinkageK-meansMathematicsQA1-939ENMantik: Jurnal Matematika, Vol 4, Iss 1, Pp 22-31 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Clustering Centroid Linkage K-means Mathematics QA1-939 |
spellingShingle |
Clustering Centroid Linkage K-means Mathematics QA1-939 Rini Silvi Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
description |
Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under non-hierarchical cluster analysis, is a simple and easy to implement method. On the other hand, Centroid Linkage clustering, which belongs to hierarchical cluster analysis, is useful in handling outliers by preventing them skewing the cluster analysis. To keep it simple, outliers are often removed even though outliers often contain important information. HIV/AIDS is a serious challenge for global public health since HIV/AIDS is an infectious disease attacking body’s immune system that in turn lowering the ability to fight infections which in the end causing death. HIV/AIDS indicators data in Indonesia contain outliers. This research uses gap statistic to define the number of clusters based on HIV/AIDS indicators that groups Indonesia provinces into 7 clusters. By comparing Sw/Sb ratio, Centroid Linkage clustering is more homogenous than K-means clustering. Using clustering, the government shall be able to create a better policy for fighting HIV/AIDS based on the dominant indicators in each cluster. |
format |
article |
author |
Rini Silvi |
author_facet |
Rini Silvi |
author_sort |
Rini Silvi |
title |
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
title_short |
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
title_full |
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
title_fullStr |
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
title_full_unstemmed |
Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia |
title_sort |
analisis cluster dengan data outlier menggunakan centroid linkage dan k-means clustering untuk pengelompokkan indikator hiv/aids di indonesia |
publisher |
Department of Mathematics, UIN Sunan Ampel Surabaya |
publishDate |
2018 |
url |
https://doaj.org/article/7805cd4899904836bc52c014e95a035f |
work_keys_str_mv |
AT rinisilvi analisisclusterdengandataoutliermenggunakancentroidlinkagedankmeansclusteringuntukpengelompokkanindikatorhivaidsdiindonesia |
_version_ |
1718379890516951040 |