Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia
Cluster analysis is a method to group data (objects) or observations based on their similarities. Objects that become members of a group have similarities among them. Cluster analyses used in this research are K-means clustering and Centroid Linkage clustering. K-means clustering, which falls under...
Guardado en:
Autor principal: | Rini Silvi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Department of Mathematics, UIN Sunan Ampel Surabaya
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7805cd4899904836bc52c014e95a035f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impacts of changing climate on the distribution of migratory birds in China: Habitat change and population centroid shift
por: Jie Liang, et al.
Publicado: (2021) -
Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer
por: Yunita Ratna Sari, et al.
Publicado: (2020) -
RFM ranking – An effective approach to customer segmentation
por: A. Joy Christy, et al.
Publicado: (2021) -
DATA MINING CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS UNTUK KLASTERISASI TINGKAT TRIDARMA PENGAJARAN DOSEN
por: Rizki Muliono, et al.
Publicado: (2019) -
PERBANDINGAN ANTARA METODE K-MEANS CLUSTERING DENGAN GATH-GEVA CLUSTERING
por: Siti Lailiyah, et al.
Publicado: (2016)