Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold

Data-driven computing in elasticity attempts to directly use experimental data on material, without constructing an empirical model of the constitutive relation, to predict an equilibrium state of a structure subjected to a specified external load. Provided that a data set comprising stress–strain p...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yoshihiro Kanno
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/7811f04a4abb47539f5b12f02939f59b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares