Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
Data-driven computing in elasticity attempts to directly use experimental data on material, without constructing an empirical model of the constitutive relation, to predict an equilibrium state of a structure subjected to a specified external load. Provided that a data set comprising stress–strain p...
Guardado en:
Autor principal: | Yoshihiro Kanno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7811f04a4abb47539f5b12f02939f59b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data-Driven Kalman Filtering in Nonlinear Systems with Actuator and Sensor Fault Diagnosis Based on Lyapunov Stability
por: Lingling Fan, et al.
Publicado: (2021) -
On Weak concircular Symmetries of Trans-Sasakian manifolds
por: Hui,Shyamal Kumar
Publicado: (2011) -
Kernel Adaptive Filters With Feedback Based on Maximum Correntropy
por: Shiyuan Wang, et al.
Publicado: (2018) -
An Improvised SIMPLS Estimator Based on MRCD-PCA Weighting Function and Its Application to Real Data
por: Siti Zahariah, et al.
Publicado: (2021) -
A Smart Landing Platform With Data-Driven Analytic Procedures for UAV Preflight Safety Diagnosis
por: Zhenyu Zhou, et al.
Publicado: (2021)