Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
Data-driven computing in elasticity attempts to directly use experimental data on material, without constructing an empirical model of the constitutive relation, to predict an equilibrium state of a structure subjected to a specified external load. Provided that a data set comprising stress–strain p...
Enregistré dans:
Auteur principal: | |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7811f04a4abb47539f5b12f02939f59b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!