Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold

Data-driven computing in elasticity attempts to directly use experimental data on material, without constructing an empirical model of the constitutive relation, to predict an equilibrium state of a structure subjected to a specified external load. Provided that a data set comprising stress–strain p...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Yoshihiro Kanno
Format: article
Langue:EN
Publié: Elsevier 2021
Sujets:
Accès en ligne:https://doaj.org/article/7811f04a4abb47539f5b12f02939f59b
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!