Joint Feature-Space and Sample-Space Based Heterogeneous Feature Transfer Method for Object Recognition Using Remote Sensing Images with Different Spatial Resolutions
To improve the classification results of high-resolution remote sensing images (RSIs), it is necessary to use feature transfer methods to mine the relevant information between high-resolution RSIs and low-resolution RSIs to train the classifiers together. Most of the existing feature transfer method...
Guardado en:
Autores principales: | Wei Hu, Xiyuan Kong, Liang Xie, Huijiong Yan, Wei Qin, Xiangyi Meng, Ye Yan, Erwei Yin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/782560f7745a484095a819da22719c99 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep/Transfer Learning with Feature Space Ensemble Networks (FeatSpaceEnsNets) and Average Ensemble Networks (AvgEnsNets) for Change Detection Using DInSAR Sentinel-1 and Optical Sentinel-2 Satellite Data Fusion
por: Zainoolabadien Karim, et al.
Publicado: (2021) -
Manifold Feature Fusion with Dynamical Feature Selection for Cross-Subject Emotion Recognition
por: Yue Hua, et al.
Publicado: (2021) -
Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint
por: Xiaodong Yu, et al.
Publicado: (2021) -
Landsat TM/OLI-Based Ecological and Environmental Quality Survey of Yellow River Basin, Inner Mongolia Section
por: Wenlong Gao, et al.
Publicado: (2021) -
A mesoscopic drying model applied to the growth rings of softwood: mesh generation and simulation results
por: Perré,Patrick, et al.
Publicado: (2008)