Methamphetamine facilitates HIV infection of primary human monocytes through inhibiting cellular viral restriction factors
Abstract Background Methamphetamine (METH), a potent addictive psychostimulant, is highly prevalent in HIV-infected individuals. Clinically, METH use is implicated in alteration of immune system and increase of HIV spread/replication. Therefore, it is of importance to examine whether METH has direct...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/782e61a2422e42c3a01f37859d6dc0fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Background Methamphetamine (METH), a potent addictive psychostimulant, is highly prevalent in HIV-infected individuals. Clinically, METH use is implicated in alteration of immune system and increase of HIV spread/replication. Therefore, it is of importance to examine whether METH has direct effect on HIV infection of monocytes, the major target and reservoir cells for the virus. Results METH-treated monocytes were more susceptible to HIV infection as evidenced by increased levels of viral proteins (p24 and Pr55Gag) and expression of viral GAG gene. In addition, using HIV Bal with luciferase reporter gene (HIV Bal-eLuc), we showed that METH-treated cells expressed higher luciferase activities than untreated monocytes. Mechanistically, METH inhibited the expression of IFN-λ1, IRF7, STAT1, and the antiviral IFN-stimulated genes (ISGs: OAS2, GBP5, ISG56, Viperin and ISG15). In addition, METH down-regulated the expression of the HIV restriction microRNAs (miR-28, miR-29a, miR-125b, miR-146a, miR-155, miR-223, and miR-382). Conclusions METH compromises the intracellular anti-HIV immunity and facilitates HIV replication in primary human monocytes. |
---|