Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features
Abstract To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups b...
Enregistré dans:
Auteurs principaux: | Harsh Patel, David M. Vock, G. Elisabeta Marai, Clifton D. Fuller, Abdallah S. R. Mohamed, Guadalupe Canahuate |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/7839f9f79de3480ebfb1a1b48ee86d6d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma
par: Benjamin Rich, et autres
Publié: (2021) -
Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients
par: M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group
Publié: (2018) -
Lorey height for vertical stratification of an Alluvial Ombrophilous Forest
par: dos Santos Vieira,Diego, et autres
Publié: (2020) -
Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer
par: James C. Korte, et autres
Publié: (2021) -
A multivariable Mendelian randomization analysis investigating smoking and alcohol consumption in oral and oropharyngeal cancer
par: Mark Gormley, et autres
Publié: (2020)