Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features
Abstract To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups b...
Guardado en:
Autores principales: | Harsh Patel, David M. Vock, G. Elisabeta Marai, Clifton D. Fuller, Abdallah S. R. Mohamed, Guadalupe Canahuate |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/7839f9f79de3480ebfb1a1b48ee86d6d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma
por: Benjamin Rich, et al.
Publicado: (2021) -
Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients
por: M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group
Publicado: (2018) -
Lorey height for vertical stratification of an Alluvial Ombrophilous Forest
por: dos Santos Vieira,Diego, et al.
Publicado: (2020) -
Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer
por: James C. Korte, et al.
Publicado: (2021) -
A multivariable Mendelian randomization analysis investigating smoking and alcohol consumption in oral and oropharyngeal cancer
por: Mark Gormley, et al.
Publicado: (2020)