Unsupervised vector-based classification of single-molecule charge transport data

The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassump...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Mario Lemmer, Michael S. Inkpen, Katja Kornysheva, Nicholas J. Long, Tim Albrecht
Format: article
Langue:EN
Publié: Nature Portfolio 2016
Sujets:
Q
Accès en ligne:https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassumptions.