Unsupervised vector-based classification of single-molecule charge transport data

The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassump...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mario Lemmer, Michael S. Inkpen, Katja Kornysheva, Nicholas J. Long, Tim Albrecht
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:783f9f9e3f614d2ab2923c9e3e94985d
record_format dspace
spelling oai:doaj.org-article:783f9f9e3f614d2ab2923c9e3e94985d2021-12-02T17:31:19ZUnsupervised vector-based classification of single-molecule charge transport data10.1038/ncomms129222041-1723https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms12922https://doaj.org/toc/2041-1723The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassumptions.Mario LemmerMichael S. InkpenKatja KornyshevaNicholas J. LongTim AlbrechtNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mario Lemmer
Michael S. Inkpen
Katja Kornysheva
Nicholas J. Long
Tim Albrecht
Unsupervised vector-based classification of single-molecule charge transport data
description The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassumptions.
format article
author Mario Lemmer
Michael S. Inkpen
Katja Kornysheva
Nicholas J. Long
Tim Albrecht
author_facet Mario Lemmer
Michael S. Inkpen
Katja Kornysheva
Nicholas J. Long
Tim Albrecht
author_sort Mario Lemmer
title Unsupervised vector-based classification of single-molecule charge transport data
title_short Unsupervised vector-based classification of single-molecule charge transport data
title_full Unsupervised vector-based classification of single-molecule charge transport data
title_fullStr Unsupervised vector-based classification of single-molecule charge transport data
title_full_unstemmed Unsupervised vector-based classification of single-molecule charge transport data
title_sort unsupervised vector-based classification of single-molecule charge transport data
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d
work_keys_str_mv AT mariolemmer unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata
AT michaelsinkpen unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata
AT katjakornysheva unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata
AT nicholasjlong unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata
AT timalbrecht unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata
_version_ 1718380621662781440