Unsupervised vector-based classification of single-molecule charge transport data
The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassump...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:783f9f9e3f614d2ab2923c9e3e94985d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:783f9f9e3f614d2ab2923c9e3e94985d2021-12-02T17:31:19ZUnsupervised vector-based classification of single-molecule charge transport data10.1038/ncomms129222041-1723https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d2016-10-01T00:00:00Zhttps://doi.org/10.1038/ncomms12922https://doaj.org/toc/2041-1723The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassumptions.Mario LemmerMichael S. InkpenKatja KornyshevaNicholas J. LongTim AlbrechtNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-10 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Mario Lemmer Michael S. Inkpen Katja Kornysheva Nicholas J. Long Tim Albrecht Unsupervised vector-based classification of single-molecule charge transport data |
description |
The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassumptions. |
format |
article |
author |
Mario Lemmer Michael S. Inkpen Katja Kornysheva Nicholas J. Long Tim Albrecht |
author_facet |
Mario Lemmer Michael S. Inkpen Katja Kornysheva Nicholas J. Long Tim Albrecht |
author_sort |
Mario Lemmer |
title |
Unsupervised vector-based classification of single-molecule charge transport data |
title_short |
Unsupervised vector-based classification of single-molecule charge transport data |
title_full |
Unsupervised vector-based classification of single-molecule charge transport data |
title_fullStr |
Unsupervised vector-based classification of single-molecule charge transport data |
title_full_unstemmed |
Unsupervised vector-based classification of single-molecule charge transport data |
title_sort |
unsupervised vector-based classification of single-molecule charge transport data |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d |
work_keys_str_mv |
AT mariolemmer unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata AT michaelsinkpen unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata AT katjakornysheva unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata AT nicholasjlong unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata AT timalbrecht unsupervisedvectorbasedclassificationofsinglemoleculechargetransportdata |
_version_ |
1718380621662781440 |