Unsupervised vector-based classification of single-molecule charge transport data
The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture their full complexity. Here, the authors adopt strategies from machine learning for the unsupervised classification of single-molecule charge transport data without a prioriassump...
Enregistré dans:
Auteurs principaux: | Mario Lemmer, Michael S. Inkpen, Katja Kornysheva, Nicholas J. Long, Tim Albrecht |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2016
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/783f9f9e3f614d2ab2923c9e3e94985d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Unsupervised clustering and epigenetic classification of single cells
par: Mahdi Zamanighomi, et autres
Publié: (2018) -
Benchmark and application of unsupervised classification approaches for univariate data
par: Maria El Abbassi, et autres
Publié: (2021) -
Understanding resonant charge transport through weakly coupled single-molecule junctions
par: James O. Thomas, et autres
Publié: (2019) -
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
par: Tasha Nagamine, et autres
Publié: (2020) -
Unsupervised Classification of Crop Growth Stages with Scattering Parameters from Dual-Pol Sentinel-1 SAR Data
par: Subhadip Dey, et autres
Publié: (2021)