Sealing vessels up to 7 mm in diameter solely with ultrasonic technology

Richard W Timm, Ryan M Asher, Karalyn R Tellio, Alissa L Welling, Jeffrey W Clymer, Joseph F Amaral Ethicon Inc., Cincinnati, OH, USA Introduction: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing ves...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Timm RW, Asher RM, Tellio KR, Welling AL, Clymer JW, Amaral JF
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/784cb9e5480d45a98bd170d8e87a2119
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:784cb9e5480d45a98bd170d8e87a2119
record_format dspace
spelling oai:doaj.org-article:784cb9e5480d45a98bd170d8e87a21192021-12-02T03:26:40ZSealing vessels up to 7 mm in diameter solely with ultrasonic technology1179-1470https://doaj.org/article/784cb9e5480d45a98bd170d8e87a21192014-07-01T00:00:00Zhttp://www.dovepress.com/sealing-vessels-up-to-7-mm-in-diameter-solely-with-ultrasonic-technolo-peer-reviewed-article-MDERhttps://doaj.org/toc/1179-1470 Richard W Timm, Ryan M Asher, Karalyn R Tellio, Alissa L Welling, Jeffrey W Clymer, Joseph F Amaral Ethicon Inc., Cincinnati, OH, USA Introduction: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5–7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. Methods: In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE®+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1–7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Results: Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5–7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Conclusion: Sealing 5–7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5–7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5–7 mm vessels are shown to be reliable and durable in in vivo preclinical studies. Keywords: ultrasonic, Harmonic, vessel sealing, burst pressure, 7 mmTimm RWAsher RMTellio KRWelling ALClymer JWAmaral JFDove Medical PressarticleMedical technologyR855-855.5ENMedical Devices: Evidence and Research, Vol 2014, Iss default, Pp 263-271 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medical technology
R855-855.5
spellingShingle Medical technology
R855-855.5
Timm RW
Asher RM
Tellio KR
Welling AL
Clymer JW
Amaral JF
Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
description Richard W Timm, Ryan M Asher, Karalyn R Tellio, Alissa L Welling, Jeffrey W Clymer, Joseph F Amaral Ethicon Inc., Cincinnati, OH, USA Introduction: Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5–7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. Methods: In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE®+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1–7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Results: Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5–7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Conclusion: Sealing 5–7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5–7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5–7 mm vessels are shown to be reliable and durable in in vivo preclinical studies. Keywords: ultrasonic, Harmonic, vessel sealing, burst pressure, 7 mm
format article
author Timm RW
Asher RM
Tellio KR
Welling AL
Clymer JW
Amaral JF
author_facet Timm RW
Asher RM
Tellio KR
Welling AL
Clymer JW
Amaral JF
author_sort Timm RW
title Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
title_short Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
title_full Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
title_fullStr Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
title_full_unstemmed Sealing vessels up to 7 mm in diameter solely with ultrasonic technology
title_sort sealing vessels up to 7 mm in diameter solely with ultrasonic technology
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/784cb9e5480d45a98bd170d8e87a2119
work_keys_str_mv AT timmrw sealingvesselsupto7mmindiametersolelywithultrasonictechnology
AT asherrm sealingvesselsupto7mmindiametersolelywithultrasonictechnology
AT telliokr sealingvesselsupto7mmindiametersolelywithultrasonictechnology
AT wellingal sealingvesselsupto7mmindiametersolelywithultrasonictechnology
AT clymerjw sealingvesselsupto7mmindiametersolelywithultrasonictechnology
AT amaraljf sealingvesselsupto7mmindiametersolelywithultrasonictechnology
_version_ 1718401736063844352